2
Yasca v1.0 – User Guide

Yasca v1.0 – User Guide
3

[image: image3.jpg]
	
	
	

	
	Yasca v2.0 User Guide
	
	
	

	
	

Table of Contents

31
Introduction to Yasca

31.1
Purpose

31.2
Scope

41.3
System Organization

52
Installation & Use

52.1
First-time Users

52.2
Access Control

62.3
Installing the system

62.4
Starting the system

72.5
Stopping Yasca

83
Plugins

83.1
About Plugins

83.2
Plugin Details

123.3
Writing Your Own Plugins

173.4
Errors, Malfunctions, and Emergencies

183.5
Messages

183.6
Quick-Reference

194
Known Issues

1 Introduction to Yasca
1.1 Purpose

Yasca was created to help software developers ensure that applications are designed and developed to meet the highest quality standards. It is related to QA testing and vulnerability scanning, but replaces neither. Instead, Yasca can be used during development to catch much of the "low hanging fruit" that may only be found much later in the development lifecycle. Distributed with both custom scanners and embedded open-source tools (e.g. JLint, antiC, Lint4J, FindBugs, and PMD, Yasca is able to deliver a relatively comprehensive analysis of scanned applications.
Yasca can be thought of as an aggregation tool "plus a little more". While the majority of detected issues are actually found by the open-source tools, the "little more" consists of plugins written for Yacsa to detect issues that the other tools did not scan for.

The philosophy behind Yasca is that developers should have access to a suite of tools to enable them to better develop secure software. Since much work has been done in this area in the form of disparate products performing similar functions, it was important to aggregate the results back in a simple, easy-to-use tool.
1.2 Scope

This guide is meant to be both a user manual and a developer guide for extending Yasca. It does not contain detailed information on any of the embedded tools that accompany Yasca. (This information resides in the docs directory.)
1.3 System Organization

Yasca is distributed as a lightweight, "no-install" desktop application. Most components are written in an included minimal distribution of PHP v5.2.5. As with all products embedded in Yasca, future distributions will attempt to include the latest stable release.

Logically, Yasca consists of a basic front-end, a set of scanning plugins and report renderers, and an engine to tie them all together.

Yasca has two front-ends available: a command line interface and a Windows GUI. Each can be used to start Yasca, but the command line interface has considerably more options available and offers better performance.

All plugins reside in the plugins directory. Three plugins are included in Yasca that have external dependencies. The first is JLint, which scans Java .class files, and requires the jlint.exe file to be available in the resource/utility directory. The second is antiC, which scans Java and C/C++ source code, and also requires the antic.exe file to be available in the resource/utility directory. The third is PMD, which partially compiles Java source code and scans the resulting abstract syntax tree. PMD requires Java JRE 1.4 or later. If any of these dependencies cannot be located, Yasca will issue a warning but will continue scanning with other plugins.

The output of Yasca is a file created by a specific report renderer. Yasca currently has renderers for rich HTML, XML, and CSV formats.
The Yasca engine, which ties the other components together, is embedded in distributed binaries. It is not meant to be modified except as part of a subsequent release. (This differs from plugins, which are meant to be modified as needed.)

2 Installation & Use
2.1 First-time Users

Before using Yasca, be sure your system meets the following prerequisites:

· Microsoft Windows 2000 or later**
· Java JRE (or JDK) v1.4 or later (required for PMD)
· At least 512 MB RAM (1+ GB suggested)
Note: Yasca was not tested on a wide range of environments, so if you run into trouble, please let us know.

Two methods of using Yasca are available: local installation and network installation.

2.1.1 Local Installation

Step 1: Download the Yasca binary from http://yasca.org/ and install it to a directory of your choice.
Step 2: Test the installation by running the following command:

(Unix)

yasca ./resources/test/

(Windows)
yasca resources\test
Step 3:
Check the new file created on your desktop in the Yasca folder (Yasca-Report-NNNNNNNN-NNNN.html). It should contain findings from the test.
2.1.2 Shell Installation

You can integrate Yasca into the Windows Explorer shell by running the etc/yasca.reg registry file.

[image: image1.png]
The yasca.reg file is set up to look for Yasca at the following location:

c:\dev\yasca\

If you want to change that location, you can edit the registry manually. The setting is located at:

HKLM\SOFTWARE\Classes\Folder\shell\Yasca!\command
2.1.3 Non-Windows Installations

Although Yasca was developed and tested under Windows, only a few components are Windows-specific, such as the JLint and antiC plugins, and the batch files that initiate the Java-based tools. It is expected that a future version will remove this dependency and make it easy to run on non-Windows systems.

2.2 Access Control

Yasca is being made freely available to all interested members of the UBS community. The only access controls associated with Yasca are access to the network share (for network use) and appropriate use of the reports generated from Yasca.
Since the reports will contain sensitive information, including vulnerabilities and code snippets, the data classification of those reports is confidential. See the Data Classification Policy for more information on this.
2.3 Installing the system

Describe the procedures that the user must perform so they can access/install software, configure software, delete data, and setup software operations.

2.4 Starting the system

2.4.1 Starting from the Command Line

Yasca can be started from the command-line by typing yasca.exe from the installation directory. Appropriate command line usage should be displayed.
[image: image2.png]
In general, most users should simply run yasca <directory>. This will output an HTML report to the user's desktop. If this report location is inappropriate, the --output argument can be used to direct output to a different location.

2.4.1.1 Command Line Options

2.4.1.2 Alternative Scenarios
This section will describe various other scenarios that may be helpful in utilizing Yasca to it's fullest potential.

Only Run One Plugin:

yasca –p plugins/PluginName.php <target directory>

Run All But One (or more) Plugin(s)
 yasca –px FindBugs,PMD <target directory>

2.5 Stopping Yasca
You can stop Yasca from the command line interface at any time by pressing CTRL-C. If an external process (such as Java) has been forked, you may need to kill it separately (via the task manager or the kill command).
3 Plugins
3.1 About Plugins

Yasca uses individual plugins to perform the actual scanning of targeted files. This design allows Yasca to be easily extended to scan additional file types as needed. "Plugin Packs" can be created and distributed to scan specific file types, or issues like security, performance, or complexity.

Yasca is distributed with both external plugins as well as a number of native plugins. Though there is no difference between the two from the engine's perspective, we define a native plugin to be one that is completely self-contained and extends the Plugin class, and we define an external plugin to be everything that requires additional software for processing.
The external plugins distributed with Yasca are:

· Grep Plugin. Uses external GREP files to scan target files for simple patterns.

· PMD Plugin. Uses PMD to parse and scan Java (and JSP) source code for issues.

· JLint Plugin. Uses J-Lint to scan Java .class files for issues.

· antiC Plugin. Uses antiC to scan Java and C/C++ source code for issues.

· FindBugs Plugin. Uses FIndBugs to scan Java class and Jar files for issues.

· Lint4J Plugin. Uses Lint4J to scan Java .class files for issues.

All plugins are located within the plugins directory, but this can be overridden at runtime. See the section describing command-line arguments for more information. The plugin can reside directly in the plugins directory or within any directory beneath it. Tools used by the standard plugins are located in the resources/utility directory.
Each of the plugins is designed with the concept of scannable file types (extensions). A plugin will only be invoked on files that it is capable of scanning. For instance, a plugin that scans Java source code can be configured to only scan files with the .java extension.

Certain file extensions are ignored for all plugins by default. These extensions include exe, zip, jpg, gif, png, and pdf. These can be overridden by using the --ignore-ext command line option. To exclude no files (i.e. include all files), use --ignore-ext 0.

Note: You can disable a plugin, GREP file, or PMD ruleset by prefixing the filename with an underscore. For example, rename 'MyPlugin.php' to '_MyPlugin.php', or by using the -px command line option.
Each of the plugins assign a severity rating to each discovered issue. In order to keep the upgrading process as simple as possible, those ratings should not be changed by the user. Instead, the file reources/adjustments.xml can be used to change the rating or description from any plugin. For example, if you wanted to change the severity level of findings generated by the PMD plugin (under the rule "EmptyCatchBlock") , you could add an entry to the file like this:
	<adjustment plugin_name="PMD" finding_name="EmptyCatchBlock" severity="5"/>

Alternatively, if you wanted to increase the severity by one (i.e. making it less severe), you could have made it:

	<adjustment plugin_name="PMD" finding_name="EmptyCatchBlock" severity="+1"/>

You can also change the description by including a <description> element, as in:

	<adjustment plugin_name="PMD" finding_name="EmptyCatchBlock">

<description>Some New Description</description>

</adjustment>

You can append or prepend a description by using the method attribute:

	<adjustment plugin_name="PMD" finding_name="EmptyCatchBlock">

 <description method="append">Some Extra Information Here</description>

</adjustment>

3.2 Plugin Details
This section describes each of the plugins included in the Yasca distribution. This does not include PMD rulesets or the issues that JLint and antiC find. These are located in the external documentation.

3.2.1 Grep Plugin

The Grep Plugin uses external files (*.grep) located in the plugins directory to scan target files for patterns. The format of a GREP file is as follows:

	name = <Name of the Plugin>

file_types = <comma,separated,extension,list>

pre_grep = /<regular expression>/ (optional)

grep = /<regular expression>/
lookahead_value = 10
category = <Category Name>

severity = <Severity (1-5)> (optional)
category_link = <URL for information about category> (optional)
description = <Description of the finding> (optional)

As an example, below is the Process.ForName.grep file:

	name = Use of Class.forName()
file_type = java,jsp

grep = /Class\.forName\(/

category = Process Control

severity = 3

category_link = http://www.fortifysoftware.com/vulncat/java/...

As you can see, the grep statement above requires that a valid PCRE-style regular expression be used, enclosed within '/' characters. You can also use modifiers such as 'i' after the closing '/'.

The Grep Plugin is distributed with the following GREP files:

	Grep File
	Category
	Description

	Ajax.grep
	Non-standard Technology
	Detects AJAX use in JSPs.

	Authentication.
 SimplePassword.grep
	Authentication
	Using a simple password.

	Authentication.
 StoredPassword.grep
	Authentication
	Storing a cleartext password in an object

	Authorization.Debug.grep
	Authorization
	Using a 'debug' parameter

	Bug.JavaScript.
 InternalAndExternal.grep
	Bug
	Using both a SRC= as well as inline JavaScript in the same tag.

	Bug.JavaScript.
 ScriptTag.grep
	Bug
	Using a <script> tag in a .js file.

	Console.Output.grep
	Poor Logging Practice
	Use of System.[out|err].print(ln)

	Crypto.XOR.grep
	Weak Cryptography
	XOR-encryption

	Crypto.MD5.grep
	Weak Cryptography
	Weak hash function

	Crypto.Random.grep
	Weak Cryptography
	Weak source of randomness

	CustomCookies.grep
	Information Disclosure
	Only SessionID should be sent.

	DoS.ReadLine.grep
	Denial of Service
	ReadLine blocks until EOF is found

	Error-Handling.StackTrace.

 JSP.grep
	Error Handling
	Printing a stack trace in JSP

	Formatting.MissingAMPM.grep
	Bug
	Missing AM/PM when printing in 12-hour time.

	General.BadLanguage.grep
	Code Quality
	Looks for bad words.

	General.Password.
 Hardcoded.grep
	Weak Authentication
	Username == Password

	General.NonProduction
	Miscellaneous
	Using "Hello World" code.

	Information-Disclosure.

 Comment.grep
	Information Disclosure
	Comments in HTML

	Injection.FileInclusion.grep
	Injection
	Including arbitrary files

	Injection.SQL.grep
	Injection
	Possible SQL Injection

	Injection.XSS.JSP.grep
	Injection
	Cross Site Scripting in JSPs

	Licensing.grep
	Licensing
	Inclusion of GPL, etc. code

	Process.exec.grep
	Process Control
	Dangerous function call

	Process.ForName.grep
	Process Control
	Dangerous function call

	Process.LoadLibrary.grep
	Process Control
	Dangerous function call

	Stability.Sleep.grep
	Stability
	Servlets are singletons, sleep = block

	String.equals.grep
	Code Correctness
	foo == "bar" => incorrect usage

3.2.1.1 The pre_grep Command
The pre_grep command allows you to specify a regular expression that must match a line within N lines of a regular expression matched within the grep expression. For instance consider:

	pre_grep = /foo/

grep = bar

This line would look for lines matching /bar/, but only if another line matching /foo/ were found within 10 lines before it. The "10 lines" in this case refers to the default value of lookahead_value, which can be also be specified in the .grep file.

One difference between pre_grep and grep: Only one pre_grep expression can be used, while multiple grep expressions can be.

3.2.2 PMD Plugin

The PMD Plugin uses the open-source tool PMD to partially compile Java source code and JSP files and then scan the resulting abstract syntax tree for certain patterns. It is extremely powerful, but can only operate on Java (and JSP) source code.
Warning: PMD is particularly fragile when scanning JSP files. Since different
PMD uses rules defined externally through a Java class file or an XPath expression. These rules (or references to rules) are grouped into rulesets which are provided in the plugins/default/pmd directory. Currently, the only active plugin is yasca.xml, but that plugin references other rulesets. It is recommended to continue using this model wherein only a small number of active PMD plugins are invoked, and that they in turn reference the specific rules and rulesets to be included.
Documentation on PMD is available at the PMD website and from the book "Applied PMD".
3.2.3 JLint Plugin

The JLint Plugin uses the open source tool JLint v3.0 (http://jlint.sourceforge.net/) to scan compiled .class files, searching for bugs, inconsistencies, and synchronization problems.

The JLint user manual provides a listing of everything JLint searches for, and is distributed in the docs/3rdparty directory.

3.2.4 antiC Plugin

The antiC Plugin uses the open source tool antiC v1.11.1 (http://jlint.sourceforge.net/) to scan Java and C/C++ source code, searching for bugs, inconsistencies, and synchronization problems.

The JLint user manual provides a listing of everything antiC searches for, and is distributed in the docs/3rdparty directory.

3.2.5 Minor Plugins

Minor plugins have been included when a pattern was too complex to match using a simple regular expression. Each of these plugins are described below.

3.2.5.1 Weak Authentication
(Authentication.Weak.php)
Weak authentication is detected when nearby lines look like they define a username and a password to be the same value.

	// Startup Properties

database.conn.username = tango44opine

database.conn.password = tango44opine

3.2.5.2 Redundant Null Check
(Code-Quality.Null.Redundant.php)
A redundant null check occurs when a particular expression is checked for null directly after it is already used in a context where an exception would have been thrown if it were. This may be legitimate: the function bar() below could modify a global object that contains foo, setting it to null; or a NullPointerException could be caught and handled appropriately.

	foo.bar();

if (foo != null) {

...

}

3.2.5.3 Empty Catch Block
(Error-Handling.Catch.Empty.php)
In many circumstances, ignoring thrown exceptions can be the source of application instability. This plugin checks to expressions like the one below:

	try {

...

} catch(Exception ex) { }

This plugin is duplicated by the PMD rule basic/EmptyCatchBlock and may be removed in a future version.
3.2.5.4 Non-Standard/Outdated Libraries (File-System.Non-Current-Libraries.php)
This plugin scans all library files (.jar, .so, .dll) to see if they match an internal whitelist of "current" libraries, stored in resources/current_libraries/. The files in this directory contain a list of "acceptable" libraries. Anything not in that list will be flagged.
3.2.5.5 Temporary Files
(File-System.Temporary-Files.php)
This plugin checks the filename for what appears to be a temporary file naming convention (e.g. 'tmp', 'temp', 'dummy', or a prefix of '~$').

3.2.5.6 Cross Site Scripting: Simple via Servlets

This plugin attempts to find simple examples of cross-site scripting within a servlet.

	class FooServlet extends Servlet {

public void doPost(HttpServletRequest req, HttpServletResponse res) {
 String bar = req.getParameter("bar");

 ...

 out.println("bar = " + bar);
}

}

3.2.5.7 External E-Mail Address
(Information-Disclosure.Email.External.php)
This plugin attempts to find external e-mail addresses embedded in source code or other files. This is not strictly a problem, but licensing considerations should dictate whether it is appropriate to include third party libraries and functions within applications.
The list of "internal" domain names are defined in the plugin file.

More information is available at:

· http://creativecommons.org/

· http://www.gnu.org/copyleft/gpl.html
· http://en.wikipedia.org/wiki/Open-source_license
3.2.5.8 COBOL Resource Leakage
(Code-Quality.Resource-Leak.GETMAIN.php)
This plugin scans for potential resource leaks in COBOL source code. The resource leak in question comes from executing a GETMAIN without an associated FREEMAIN. Long running jobs can exhaust available resources.

	EXEC CICS GETMAIN 00010000
 SET (ADDRESS OF SOME-VARIABLE) 00010010
 LENGTH (LENGTH OF SOME-VARIABLE) 00010020
 NOHANDLE 00010030
END-EXEC 00010040

3.3 Writing Your Own Plugins
It is easy to extend Yasca by writing your own plugin. This can take the form of a PHP script, GREP file, or PMD ruleset placed in the plugins directory.

3.3.1 Writing a New PHP Plugin

Writing a new PHP Plugin means extending the Plugin class (see the API or Plugin.php source code), implementing an execute() function that will perform the scan when invoked.
Suppose you want to write a PHP Plugin to search for all social security numbers hardcoded in Java source code or .properties files. The first thing you need to do is define what type of plugin it is.

There are two types of plugins: single-target and multi-target. Single targets operate only on the file passed from the engine, and multi-targets generally operate on all files in the target directory at once. The Yasca engine is not aware of this distinction, so multi-target plugins will be invoked once for each target file. It is therefore important to prevent the plugin from executing multiple times, which can be done like this:
	function execute() {

 static $alreadyExecuted;

 if ($alreadyExecuted == 1) return;

 $alreadyExecuted = 1;

Next, you should decide on the specific file types that will be scanned. In this case, the file extensions .java and .properties should suffice.
The last step is writing the code. The example below shows the finished product. Embedded comments have been removed for brevity, but full documentation should be included in any plugins that you create.

	001 <?php
002 class plugin_ssn_search extends Plugin {
003 var $valid_file_types = array("java", "properties");
004
005 function execute() {
006 $pat = "[^\d]\d{3}-?\d{2}-?\d{4}[^\d]";
007 if (preg_grep('/' . $pat . '/', $this->file_contents), $matches) {
008 foreach ($matches as $line_number => $match) {
009 $result = new Result();
010 $result->line_number = $line_number;
011 $result->severity = 5;
012 $result->category = "Social Security Number";
013 array_push($this->result_list, $result);
014 }
015 }
016 }
017 }
018 ?>

We will now drill down into this examine and explain all important parts of this file.

	002 class plugin_ssn_search extends Plugin {

Line 002 defined the class name to be plugin_ssn_search, which extends Plugin.The class name must be derived from the name of the file that it is defined in. The Yasca engine scans the plugins directory for all PHP files, makes a note of the file name, and executes an include() on the file. The file name noted is transformed to match the expected class name by replacing all hyphen (-) and period (.) characters with an underscore (_), and converting the entire string to lowercase. Therefore, the plugin file Foo-Bar.Quux.php would be expected to have the class plugin_foo_bar_quux.
	003 var $valid_file_types = array("java", "properties");

This line defines the valid file types that can be scanned. In this case, we are only scanning Java source code and .properties files. In order to scan all files, simply use an empty array.

	005 function execute() {
006 $pat = "[^\d]\d{3}-?\d{2}-?\d{4}[^\d]";
007 if (preg_grep('/' . $pat . '/', $this->file_contents), $matches) {
008 foreach ($matches as $line_number => $match) {

Lines 005 through 016 show the implementation of the execute() function. This function overrides the Plugin::execute() function (which does nothing itself). A regular expression is defined in line 006 and is matched on line 007 against $this->file_contents, which is an array pre-populated with the full text contents of the file being scanned. On line 008, we loop over each match found from the array.

	009 $result = new Result();
010 $result->line_number = $line_number;
011 $result->severity = 5;
012 $result->category = "Social Security Number";
013 array_push($this->result_list, $result);

On lines 009 through 013 we create and use a Result object to pass the results of the scan back to the engine. The Result object has a number of properties (see the API documentation for details), but each will be filled in with defaults. The use of the specific properties is important, however, so they will be explained.
	Variable
	Description

	$result->line_number
	Used by HTMLReport to include a snippet of from the file in the final report. Also included in other reports.
Warning: The $this->file_contents object is indexed from 0, whereas line numbers start at 1. You should generally add 1 to any index used.

This defaults to 0.
Note: If you set the line_number to 0, then a snippet will not be included in the final report.

	$result->severity
	The severity is an integer value in the range of 1-5, meaning the following:
1. Critical

2. High

3. Medium (default)

4. Low

5. Informational

The severity affects the initial sorting of the reports as well as filtering that can be done with the --level command line option.

	$result->category
	This should contain a brief description (only a few words) of the issue being scanned for. Some examples are be "Poor Error Handling" or "SQL Injection".

This defaults to "General".

	$result->category_link
	This can be a URL that will be attached to the category specified above.

There is no default URL, and failing to set one will affect the HTMLReport by having the category not be a link.

	$result->plugin_name
	This should be the name of the plugin that found the particular scan. It is displayed in an HTMLReport when the user hovers their mouse over the severity column.

This defaults to the name of the class (plugin_ssn_search, in the case above).

	$result->source
	This is the line of source code or message that indicates the issue found.

If the line_number is less than or equal to 0, then this value defaults to a blank (""). Otherwise, the value is taken from file_contents using line_number.

	$result->is_source_code
	If set to true, then the $result->source text is displayed in a fixed-width font.

The default value is false.

	$result->source_context
	This specifies the context of the result.

By default, this includes from three lines before to three lines after the line_number from file_contents.

	$result->custom
	This is an array that can be used to pass additional information back to the engine and subsequently to the report renderer.

By default, this array is empty.

You can learn more about writing PHP plugins by examining the plugins included in the Yasca distribution. You can learn even more by examining the source code within the source distribution.
3.3.2 Writing a New Grep Plugin

Grep plugins are much easier to write than PHP plugins, but are not as powerful. In this section we will create a Grep plugin to perform the same function as the plugin_ssn_search class defined above.
Grep plugins are defined in files with the extension .grep and are managed by the Grep.php plugin. To avoid confusion, we will call the Grep.php plugin the "Grep plugin" and the .grep files "Grep scripts".
The following grep script is functionally equivalent to the plugin_ssn_search plugin that we developed in the last section. It scans all files that match the specified extensions for the same regular expression as before.

	001 name = Social Security Number
002 file_type = java,properties
003 grep = /[^\d]\d{3}-?\d{2}-?\d{4}[^\d]/
004 category = Social Security Number
005 severity = 5

The grep expression is used internally by the Grep Plugin in a preg_grep() PCRE function. Internal option specifiers such as /i or /U can be included. More information about syntax is available in the PHP manual.
A number of grep scripts are included in the Yasca distribution. These are:

· Ajax: Detects use of AJAX in JSP, JavaScript, or HTML files
· Console.Output: Using System.out or System.err
· Crypto.MD5: Use of MD5 (deprecated hash algorithm)
· CustomCookies: Inserting or modifying client-side cookies.
· DoS.ReadLine: Using BufferedReader.readLine(), which blocks until EOF is read
· General.BadLanguage: Searches for bad language
· General.Password.Hardcoded: Looks for hardcoded passwords in source code
· Information-Disclosure.Comment: Comments in JSP or HTML files
· Injection.SQL: SQL Injection
· Injection.XSS.JSP: Cross-Site Scripting via <%=request.getParameter("foo")%>
· Licensing: GNU or other public licenses
· Process.exec: Executing external processes
· Process.ForName: Instantiating classes on the fly
· Process.LoadLibrary: Use of JNI
· Stability.Sleep: Sleeping within a servlet
· String.equals: Using == instead of .equals() to compare Strings.
3.3.3 Writing a New PMD Ruleset

PMD Rulesets are easy to write and extremely powerful.

	001 <rule name="SocialSecurityNumber"

002 message="Don't use social security numbers."
003 class="net.sourceforge.pmd.rules.XPathRule"

004 externalInfoUrl="#">

005 <description>Do not use SSN in source code.</description>

006 <priority>2</priority>

007 <properties>

008 <property name="xpath">

009 <value>

010 <![CDATA[

011 //Literal[matches(@Image, "[^\d]\d{3}-\d{2}-\d{4}[^\d]")]

012]]>

013 </value>

014 </property>

015 </properties>

016 <example>
017 String s = "123-45-6789";

018 </example>

019 </rule>

The abstract syntax tree that PMD creates during compilation is actually XML, which can be queried using XPath. In the example above, the XPath expression is used to locate all literal values that match the regular expression for social security numbers.
3.3.4 References
PMD

· PMD Home Page: http://pmd.sourceforge.net/
· PMD Applied (book): http://www.pmdapplied.com/
· XPath Tutorial: http://pmd.sourceforge.net/xpathruletutorial.html
· XPath 2.0 Specification: http://www.w3.org/TR/xpath20/
Grep

· Regular Expression Functions (PCRE) in PHP: http://us.php.net/manual/en/ref.pcre.php
· PCRE Information: http://www.pcre.org/pcre.txt
4 Known Issues
4.1 Known Bugs

	ID
	Severity
	Description

	BUG-001
	Medium
	JLint does not return the correct path when analyzing Java source code.

	BUG-002
	Medium
	PMD long descriptions and examples are not included.

	BUG-003
	Medium
	PMD returns errors when using the basic-jsp ruleset and scanning Java source code.

	
	
	

	
	
	

	
	
	

4.2 Future Enhancements

	ID
	Severity
	Description

	ENH-001
	Low
	Adapt to work on non-Windows systems (executable translation table?)

	ENH-002
	Medium
	Allow re-mounting of links to a local file system (so reports can be viewed on another workstation where the target files are some place else).

	ENH 003
	Medium
	Allow modifications to descriptions and severities

	
	
	

	
	
	

�Re-format "nicexml"

